Las herramientas de inteligencia artificial crecen con rapidez y llegan a millones de personas. En ese contexto, investigadores de la Universidad de Texas en Austin estudiaron por qué surge sesgo en sistemas automatizados. El equipo, con Hüseyin Tanriverdi y el doctorando John-Patrick Akinyemi en McCombs, analizó un conjunto de 363 algoritmos que otros habían identificado como sesgados, tomados de un repositorio llamado AI Algorithmic and Automation Incidents and Controversies. Para cada algoritmo problemático compararon uno similar que no había sido señalado, y examinaron también las organizaciones que los desarrollaron y usaron.
El estudio identifica tres factores relacionados que elevan la probabilidad de resultados injustos. Primero, cuando no existe una verdad fundamental bien establecida (por ejemplo, estimar edad u opiniones tratadas como hechos), aumenta la probabilidad de sesgo. Segundo, la complejidad del mundo real se pierde cuando los modelos omiten variables relevantes; los autores citan el caso en Arkansas donde la sustitución de visitas domiciliarias de enfermeras por decisiones automatizadas redujo el acceso a apoyos para personas con discapacidad. Tercero, la falta de participación diversa de las partes interesadas puede ocultar objetivos en conflicto y limitar soluciones de compromiso.
Los investigadores concluyen que reducir el sesgo requiere más que mejorar la precisión: es preciso abrir las cajas negras, tener en cuenta la complejidad del mundo real, incluir diversidad de insumos y definir verdades fundamentales claras. Tanriverdi afirma que estos factores afectan directamente la equidad y son piezas faltantes que muchos científicos de datos ignoran. La investigación aparece en MIS Quarterly. Fuente: UT Austin
Palabras difíciles
- sesgo — preferencia o error que produce resultados injustos
- algoritmo — serie de reglas que realiza un cálculo o decisiónalgoritmos
- repositorio — lugar donde se guarda información o datos
- sustitución — acción de reemplazar una cosa por otra
- caja negra — sistema cuyo funcionamiento interno no se conocecajas negras
- insumo — materiales o datos usados para producir algoinsumos
- equidad — trato justo que evita ventajas o discriminación
Consejo: pasa el cursor, enfoca o toca las palabras resaltadas en el artículo para ver definiciones rápidas mientras lees o escuchas.
Preguntas de discusión
- ¿Qué problemas puede causar no definir una verdad fundamental clara en sistemas automatizados? Da ejemplos.
- ¿Cómo podría la participación diversa de las partes interesadas ayudar a reducir el sesgo en algoritmos?
- Según el artículo, ¿qué riesgos tiene sustituir decisiones humanas por decisiones automatizadas en servicios sociales?
Artículos relacionados
Ciberamenazas en la cumbre entre la Unión Africana y la Unión Europea
La cumbre AUEU en Luanda puso las amenazas digitales en el centro. Periodistas sufren vigilancia y Kenia registró miles de millones de ciberataques. Líderes pidieron más protección, normas comunes e inversión a largo plazo.
Brazo robótico inflable para recoger manzanas en Washington
Productores de fruta en Washington enfrentan falta de mano de obra. Investigadores de WSU desarrollaron un brazo robótico inflable y barato para ayudar a recoger manzanas; ya lo probaron en huertos y buscan mejorar y comercializar la tecnología.
Violencia digital contra periodistas y activistas mujeres en Indonesia
La violencia digital contra periodistas y activistas mujeres en Indonesia ha aumentado y se hace más visible. Víctimas cuentan doxing, manipulación de fotos, DDoS y acoso; las respuestas legales e institucionales siguen siendo limitadas.