AI-enhanced forecasting is changing how seasonal weather risks are predicted and shared. In India this summer 38 million farmers received forecasts produced by NeuralGCM, a hybrid model that merges traditional physics-based methods with machine learning. The forecasts arrived about four weeks before the normal monsoon onset and correctly signalled a three-week pause after the monsoon made landfall in early June and moved north. Researchers say the model matched or outperformed conventional physics models and other AI approaches while requiring less computing power.
The University of Chicago team, including Pedram Hassanzadeh, argues that independent benchmarking is essential. Chicago recently received Gates Foundation support to benchmark existing models over East and West Africa, with attention to rainy seasons and heatwaves. The Human-Centred Weather Forecasts initiative launched this year and now partners five countries; the team plans to add ten more countries in 2026 and 15 more in 2027, so the project could benefit some 30 countries and millions of farmers.
Project partners note clear economic potential. The forecasts were used to advise farmers on planting and timing, and Michael Kremer estimated more than US$100 for farmers for every dollar invested by the government. Agricultural scientists urged stronger links between rainfall signals and measures such as soil moisture, vapour pressure deficit, heat-stress forecasts and crop-stage sensitivity, warning that a wrong early-onset forecast can cause seedling loss, re-sowing costs and lost growing time.
Researchers are also training meteorologists in low- and middle-income countries to use AI models. Hassanzadeh called the current progress a scientific achievement and the start of wider AI-driven change in forecasting, while noting that technical and practical challenges remain as the project scales up.
Difficult words
- hybrid — A model that combines two different methods
- physics-based — Based on physical laws and scientific equations
- benchmark — To compare a model's performance against standardsbenchmarking
- initiative — A new organized program or project
- vapour pressure deficit — A measure of air dryness affecting plant water loss
- seedling — A young plant recently sprouted from seed
Tip: hover, focus or tap highlighted words in the article to see quick definitions while you read or listen.
Discussion questions
- How could these AI-enhanced forecasts change farmers' decisions about planting and timing? Give reasons and examples from the article.
- What are the main benefits and risks of scaling this forecasting project to many countries?
- Why is independent benchmarking important for weather models like NeuralGCM, and how could it affect trust in forecasts?
Related articles
Outer root layer controls twisted root growth
A research team found that the outer cell layer of roots (the epidermis) can control whether roots grow twisted or straight. Lab measurements and computer models explain why this layer has more mechanical influence, with implications for crops.
Small pause to slow misinformation on social media
Researchers at the University of Copenhagen propose a small pause before sharing on platforms like X, Bluesky and Mastodon. A computer model shows that a short delay plus a brief learning step can reduce reshares and improve shared content quality.